
EXISTENCE OF PARAMETRICALLY BOUND WAVEGUIDES AND SOLITONS IN 

THE PRESENCE OF THREE-FREQUENCY WAVE INTERACTION 

Yu. N. Karamzin and T. S. Filipchuk UDC 621.375.82 

The resonance interaction of three waves whose frequencies are related by the equation 
mx + m2 = ~3 can take place in media having quadratic nonlinearity. One of the most inter- 
esting consequences of such an interaction is the formation of specific propagation under 
certain conditions, when the interaction has a reactive nature for the most part. In this 
case compensation of the diffractional divergence (because of nonlinear variation of~he phase 
velocities) of confined beams can occur with the formation of bound waveguides, and compen- 
sation of the dispersional spreading of short pulses can occur with the formation of bound 
solitons [1-3]. 

In a number of particular cases it has been possible to find the profiles of the wave- 
guides and solitons: analytically (the structure of one mode of solitons in the presence of 
phase detuning [I]) or by numerical methods (the shape of cylindrical three-frequency wave- 
guides [2] and of one-dimensional waveguides in the degenerate case of ~ = ~2 [3] with phase 
synchronism, as well as one mode of cylindrical beams with detuning of the phase velocities 
[3]). In the general case, however, the question of the existence of waveguides and soli- 
tons has remained open. 

In the present report we demonstrate the existence of a two-parameter family of wave- 
guide and soliton solutions of the system of equations describing the three-frequency inter- 
action of waves in a nondissipative dispersive medium: 
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limited solutions of the type vj = yj(x)e-iFJ z (FI + F2 -- Fa = --A). Here v. are the i.e., 
complex amplitudes of waves propagating al~ng the z axis; A~= x-m(~/Sx)(xm~/~x);i = k~ + 
k= -- ka is the detuning of the average values of the wave vectors. For m = 0 (the plane 
case) the system of equations (i) describes the interaction of pulses with the condition of 
equality of the group velocities of the waves; Dj = I/2(32kj/~m2j) are the coefficients of 
diffusion of the wave packets; x = t -- z/u is the associated coordinate. For m = 1 the sys- 
tem of equations (i) describes the interaction of axisymmetric beams, and then Dj = i/2kj 
are the coefficients of transverse amplitude diffusion. 

It is shown in the report that for all positive parameters Dj-lrj (FI + F= -- F~ = --A) 
there exist real functions yj(x), which are positive in the semiinterval 0 ~ x < ~ and are 
reduced to zero only at infinity, such that 

yj(0) = yj(oo) = 0 (2) 

and vj = yj (x)e-irJ z are solutions of the system (i). In this case the functions yj(x) satis- 
fy the system of equations 
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This means that for any phase detuning h with positive coefficients of diffusion D= there 
J exists a set of fundamental modes of waveguides and solitons differing from one another by 

the magnitude of the phase velocity and the shape of the amplitude profile. The coefficients 
of diffusion Dj of the wave packets can have different signs. Conditions for the formation 
of solitons are also possible if they are all negative. In this case, in contrast to the 
case of positive Dj, the solitons will be accelerated. 

We note that the equations (i) allow the simultaneous sign change of two of the complex 
amplitudes v.. Therefore, when Dj > 0, besides the solutions with positive amplitude pro- 
files yj(x),Jwhich can conditionally be called cophase solutions, there exist solutions when 
the amplitude profiles of two of the waves are negative (in antiphase to the third wave). 
Similarly, when Dj < 0, besides the negative solutions yj(x) the system (3) has solutions 
when two of the fSnctions are positive. Such solutions 5an have different stabilities rela- 
tive to small changes in the initial conditions. 

i. Existence of Solutions for m = 0 

The main idea of the proof consists in drawing on the variational principle, and it has 
been used earlier to prove the existence of a solution of one second-order differential 
equation [4]. 

Without a restriction of generality we will take all the coefficients in the system (3) 
as equal to unity. Let us consider the problem at the minimum of the functional 

3 

where yj (x) belong to a class K of functions which are nonnegative, continuous, and have 
piecewmse-continuous derivatives in 0 < x < ~ satisfying the conditions (2), the normaliza- 
tion condition 

J" y l y2y3dx  = l .  (5) 
o 

and are such that the integral (4) exists. 

The existence of the integral (5) follows from the existence of the integral (4) 
the elementary inequality 

y (x) = - 2 < S  + 
x 0 

and 

(6) 

For functions yj~ K it follows from (5) and (6) that J(y) ~ i. Then there exists an exact 
lower bound ~ inf J(y) >/ I and , "~ (n) ~ K for which lim ](y(n)) = ~. y~K a sequence of functions i;j } n - , ~  

Let j(y(n))< c2. From (6) we get 

(7) y~n~,(x)<c a, n = t ,  2, . . . .  

On t h e  o t h e r  h a n d ,  f o r  a n y  x~ and  x2 

]y~'~) (x=) - -  y~O (x l ) I  ~ = y}n)dx <~ J (y(~)) ( x ~ -  xl) < c '  (x, - -  xl), 

A c c o r d i n g  t o  t h e  A r z e l ~  t h e o r e m ,  f r o m  t h e  s e q u e n c e  { y ( n ) }  one  c a n  c h o o s e  a s e q u e n c e  w h i c h  
u n i f o ' r m l y  c o n v e r g e s  i n  a ny  f i n i t e  i n t e r v a l  t o  t h e  c o n t i n u o u s  f u n c t i o n s  y j  ( x ) .  
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The problem now consists in proving that with the choice of suitable positive con~;~tants 
8j the functions 8jyj (x) will be a solution of the problem (2), (3). For this we consider 

the system of equations 

~(n). (n) ,(n) ---- 0; 

~.(,o _ u(# ~) .(~)- (~) .(~) O; ( 8 )  
2 . - [ - ~ 2  Y3  ~ i  = 

u"(") __ u~ ") ( ')u( ')u!,  ") ---- 0 3 - ~  ffZ3 I 2 

with the boundary conditions 

The solution of the problem (8), 

llj(O) --- Itj(O0) = O. 

(9) has the form 

(9) 

oo 

0 

uP ) = ~(.,"~ t" G (x, ~) y(?) (~) ~?') (D d~; 

~ )  = oC ) ~ C (x, ~) ~?) (D #-") (D d~, 

(io) 

where G(x, $) = (i/2)(e -]x-~l + e-(X+$))is the Green function of the operator L(u) = H -- u 
for the boundary conditions (9). 

Using the representation (i0), one can prove that the integral J(u (n)) exists. We 
choose the constants ~(n) from the conditions 

3 
oo oe 

[ u(~)Y(~)Y(~)dx = ~ u('~)u(n)Y(n)dx = S u('n)u("n)u{'~)dx = 1 
g 1 2 3 . )  1 2 3 1 z, 
0 0 0 

and we prove that the solution of the problem (8), (9) decreases the functional (4), i.e., 

j(u(~)) ~ j(g(n)). 

A f t e r  m u l t i p l i c a t i o n  o f  E q s .  (8 )  b y  u~ n )  , s u m m a t i o n ,  a n d  i n t e g r a t i o n ,  we o b t a i n  

3 
](u(n)) = Y~ ~(~). (11) 

j=l J 

On the other hand, multiplication of (8) by yj(n) and integration gives 

3 

J (u(~)) + J (yr - -  Y (u(n) - -  yr = 2 ~ a~ ~) . 
y = l  

( 1 2 )  

The following relations result directly from (ii), (12), and (6): 

j (u(,~)) ~ y (y(n)), u~ )  ~ K;  

3 
l i m J ( u ( n ) )  = l i m J ( g ~ ' ) ) - - l i m . . ~ a ~  n ) = % ;  
n-~oo rt~feo Tt~oo 3 = 1  

l i m  J (u(*O - -  g(~)) = O; 

l i m  [u} n) (x) - -  g~'~)(x)l == O, x ~ [0, co) .  

(13) 
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. ( n )  
if one uses the uniform convergence of the sequence iy i } to continuous functions in any 
finite interval and one uses the representation (i0), ~henone can test the existence of the 
limits lim =~n) : =j. 

Let us return to the determination of the functions u~ n)- of (i0). We divide the inter- 
val of integration into [0, X] and [X, | and then for x < X we have 

l y?) (x) -- a~') J' G (x, ~) y(n) (~) y~,) (~) d~ ~ [y~n) __ u~,~) I ~- a~) j' G (x, ~) y?) (~) y~)(~) d~, 
0 X 

From the uniform convergence of the sequence {y~n)} in the segment [0, X], the last equation 
in (13), and (7) it follows that J 

I x I Yz (x) -- oc I .f G (x, ~) Y8 (~) Y2 (~) d~ ~ ale 2 ch xe - ~  . 
I o 

Taking X to infinity, we obtain 

y, (x) = a~ .I G (x, ~) Y3 (~) Y2 (~)'d~ ( 1 4 )  
0 

In a similar way we establish the equations 

Y2 (x) = a2 ~ G (x, ~) Ya (~) Yl (~) d~; (15) 
0 

o o  

Ya (x) ---- oc a ,f G (x, %) Yl (%) Y2 (%) d~. (161  
0 

�9 0 and yj(x) ~ 0 in [0, =). The limiting By its construction y n)(x) > 0 in [0, ~) and a 2 

functions satisfy the conditions (2) and by virtue of (5) they cannot be identically equal 
to zero. The right sides in (14)-(16) can be differentiated twice with respect to x, as a 
result of which the functions yj = (#a~2~s/aj) yjwill satisfy Eqs. (3) with unit coefficients 

and the boundary conditions (2). 

. Existence of Solutions for m = i 

By analogy with Sec. I we set the problem at the minimum of the functional 

=o 3 

with the normalization condition 

o~ 
,i 

j yly2yaxdx -= 1 
0 

in the same class of functions as for the plane case. But now the minimizing sequence {y(n)} 
can also converge nonuni~o,rmly in any finite interval. However, one can always construct J 
a minimizing sequence {u~ n) } such that it converges uniformly in any segment [0, X]. To 
prove thls it is enough ~o prove that the integral 

~3 

J = .I (u?" + 
0 j=l 

(17) 
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(n) 
is uniformly bounded. As the functions uj we take the solution of the system 

_ (~(n), (n)u(n)  

l " ( n )  _ _  U(3 n) ~(.) . ( n ) ,  ( n )  

(18) 

with the boundary conditions (9). Then the representation (I0) is valid, where the Green 
function of the operator L(u) = ~ + (i/x)6 -- u, 6(0) = u(~) = 0 has the form 

~ I  o(~)K o(x), O < ~ x < o %  
G (x, ~) = (~Ko (~) io (x), 0 < x ~< ~ < ~ .  

It turns out that y~n)~ L2[0, ~) In fact 

= - = - 2  6 ,y?,xdx < 
o o o 

(19) 

Using the inequality (19) and the representation of the solution of the system (18) in the 
form (i0), we can make sure o~ ~he uniform boundedness of the integral (17). Then the uni- 
formly converging sequence {u~ n)} can be taken as the initial minimizing sequence. The 

further course of the proof coincides with that carried out for the plane case. 
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